
@
®

 Understanding the Neuron®
Firmware Address Table

April 2009 LONWORKS® Engineering Bulletin

@ECHELON

Introduction

The Neuron firmware implements an essential data structure, the address table, which can
contain no more than 15 entries. Running short of address table space might prevent new
connections from being created, resulting in less efficient solutions.
This bulletin describes the purpose of the address table, explains how this valuable resource is
being used and explains how device manufacturers and integrators can control and optimize its
use.

Purpose of the Address Table

The address table is used to store addressing information, describing the destination for outgoing
data. The address table also stores details about all groups the device belongs to, and might apply
to incoming data, thus.
Each bound output network variable on a given device is associated with an address table entry1

via the address table index field of the NV_config table. When this network variable needs to be
propagated, the firmware consults the associated address table entry for addressing information
and transport mechanism to be used.

Each used address table entry contains an indicator for the address type (subnet/node addressing,
group addressing, or broadcast addressing) and the respective addressing details. These details
also include transport properties such as the retry counts, tx_timer values, etc.
Multiple network variables can share an address table entry, provided all these network variables
are bound to the same destination, using the same service type and transport properties.
Figure 1 illustrates a basic scenario. Device A is bound to two remote devices, devices X and Y.
Device A’s address table entry 0 points to device X, and address table entry 1 points to device Y.
The second address table entry is shared between two network variables on device A, NV index
0 and 2. These network variables have a unique selector value each, allowing for the receiving
device Y to distinguish between an update to nvi01 and nvi02, and to route the incoming NV
update accordingly.
Assuming subnet/node addressing, neither device X nor Y requires an address table entry.

1 With the exception of polled output network variables or output network variables being bound to a polling input network variable. See later in
this document for more details on polling connections.

Engineering Bulletin Understanding the Neuron Firmware Address Table

@ECHELON 2

Address
table Index

1

... Destination
address, etc

XS/N

Address Type

NV_config_table address_table

0

1

0

1

2

3

...

0

2

<= 15

YS/N1

nvi01

nvi02

nvi01

nvi02

Device A

Device X

Device Y

Figure 1. Neuron Tables and NV Updates

Typically, the address table stores the addressing information for transactions that are initiated
on the local device.
In case of a polling connection, the initiating device is the polling one (the device that
implements the input network variable), rather than the one implementing the output network
variable. A polling connection is automatically created if the input network variable is flagged as
being polling. This flag is automatically set by the Neuron C Compiler as a result of applying the
poll() Neuron library function to an input network variable2. The total address table consumption
remains unchanged, however, polling changes the location of the associated address table entry.
Figure 2 illustrates this scenario: device X requires an address table entry to be able to poll the
output network variable's value from device A. Device A, in return, only requires one (shared)
address table entry for the connections made to device Y.

The third purpose of the address table is to denote group membership. Each LONWORKS®device
belongs to one or two domains. It will be member of a subnet for each domain, and it will have a
unique identifier within each subnet, the node ID.
The node might also become member of a group. Groups allow for reliable multicast transactions
over the boundaries of subnets, but require all participating devices to join the group.

2 This flag is not to be confused with output network variables declared with the "polled" attribute. The latter must be bound to a polling input
network variable, whereas the polling input network variable can be bound to any output network variable.

Engineering Bulletin Understanding the Neuron Firmware Address Table

@ECHELON 3

Address
table Index

1

...

NV_config_table

1

0

1

2

3

..
.

0

1

nvi01

nvi02

nvi01

nvi02

Device A Device X

Device Y

poll()

Destination
address, etc

Address Type

address_table

2

<= 15

YS/N

Etc
AS/N

Type
Address tab

Figure 2. Polling Connection

An address table entry is required for each group to which the device belongs. Upon receipt of a
group-addressed packet from the network, the node explores the address table, sequentially
searching for an entry indicating membership to the group.
This is illustrated in figure 3: Device A is bound to both, device X and Y, using a group
addressed connection. Due to the group membership information being required on all
participating devices, an address table entry is required on all devices3.
In summary, address table entries are required for the following:

• Addressing information for transactions being initiated by the local device

• Group membership information

3 Note that this is true for all groups. The LonTalk® protocol limits the use of acknowledged service in groups to
groups with no more than 64 members, whereas unacknowledged services may be used with groups of unlimited
size (open groups). However, the group membership information must be stored on each member device in either
case.

Engineering Bulletin Understanding the Neuron Firmware Address Table

@ECHELON 4

Address
table Index

0

...

NV_config_table

0

1

2

3

...

0

1

nvi01

nvi02

Device A Device X

Destination
address, etc

GID=1GRP

Address Type

address_table

2

<= 15

Etc
G=1GRP

Type
address_t

nvi01

nvi02

Device Y

Etc
G=1GRP

Type
address_t

Figure 3. Group Connection

Saving Address Table Consumption

In order to reduce the address table consumption on a given device without reducing the number
or complexity of connections, both the integrator and the device manufacturer can assist the
complex, but generic, network variable binder algorithm. Since both device manufacturer and
system integrator have knowledge about the specific connection requirements as well as the
future connections, that expertise should be used to prepare the devices in the best possible way,
and to create connections in a resource-preserving fashion.
For the device manufacturer, the first rule should be not to limit available address table space. A
maximum of 15 address table entries should be allowed if possible, allowing for a maximum
number of different connection destinations.
Secondly, the device manufacturer only use the poll() function after careful consideration. In
most cases, the use of the poll() function can be replaced by heartbeats in order to ensure
consistent and up-to-date input network variable values after resetting or power-cycling the
device. Excessive use of the poll() function can easily consume a huge amount of address table
entries as well as group identifiers, not always visible to the integrator.
The integrator, too, can manage address tables consumption. As discussed above, an address
table entry includes the addressing type, the destination address, and transport properties like the
retry count, or the transmit timer value.
Multiple connections can only share an address table entry if the connections use equal
addressing types, transport properties, and destinations. In order to achieve this, default values
provided by the network management tool should be used for the transport properties if possible.
Broadcast addressing modes can also help to safe address table space being required. For
example, a device using domain broadcast messages requires one address table entry to store that
information. Multiple network variables might be linked to this address table entry, all using

Engineering Bulletin Understanding the Neuron Firmware Address Table

@ECHELON 5

domain broadcast addressing mechanisms. Large multicast connections with infrequent updates
are likely candidates for using broadcast services.
It should be noted that broadcast addressing modes does not support acknowledged services; the
only available options are unacknowledged (UACKD) and repeated (UACKD/RPT) services.

Balancing Address Table Consumption

In some cases, address table consumption may be re-distributed across the network. The total
number of address table entries being used in the entire system will remain unchanged, but a
trade-off may be possible to move the requirement of an address table entry from one device to
another. Consider the situation illustrated in figure 4: All members of the group connection
require one address table entry to implement this scenario. The total number of address table
entries being used is four.

Address
table Index

0

...

NV_config_table

0

1

2

3

...

0

1

nvi01

nvi02

Device A Device Y

Destination
address, etc

GID=1GRP

Address Type

address_table

2

<= 15

Etc
G=1GRP

Type
address_t

nvi01

nvi02

Device Z

Etc
G=1GRP

Type
address_t

nvi01

nvi02

Device X

Etc
G=1GRP

Type
address_t

Figure 4. Group Multicast

Figure 5 shows a very similar solution, still requiring a total of four address table entries. In
contrast to the original scenario shown in figure 4, the modified solution uses an alias to the
output network variable on device A. Consequently, two address table entries are required on
device A. Due to the alias being bound using subnet/node addressing, no address table entry is
required on the third destination device, device Z.

Engineering Bulletin Understanding the Neuron Firmware Address Table

@ECHELON 6

Address
table Index

0

...

NV_config_table

0

1

2

3

...

0

1

nvi01

nvi02

Device A Device Y

Destination
address, etc

GID=1GRP

Address Type

address_table

2

<= 15

ZS/N

Etc
G=1GRP

Type
address_t

nvi01

nvi02

Device Z

EtcType
address_t

nvi01

nvi02

Device X

Etc
G=1GRP

Type
address_t

Alias

Figure 5. Off-loading Address Table Entries by Using Aliases

The overall effect is that one address table entry has been moved from device Z to device A by
requiring the binder to use aliases rather than groups.

Disclaimer

Echelon Corporation assumes no responsibility for any errors contained herein. Echelon makes no representation and offers no warranty of any kind regarding any of the third-
party components mentioned in this document. These components are suggested only as examples of usable devices. The use of these components or other alternatives is at the
customer’s sole discretion. Echelon also does not guarantee the designs shown in this document. No part of this document may be reproduced, translated, or transmitted in any

form without permission from Echelon.

Part Number 005-0201-01 Rev. A

© 2009 Echelon Corporation. Echelon, LON, Neuron,
LonTalk, LONWORKS, and the Echelon logo,are trademarks
of Echelon Corporation registered in the United States and
other countries.

 Echelon Corporation
www.echelon.com

